Wind Vector Reconstruction Method for Molas B300

1 Introduction

Molas B300 is a ground based wind doppler lidar. The lidar uses the velocity-azimuth display (VAD) scan pattern to measure vector winds. As is shown in Figure 1, 4 independent LOS are achieved by scanning the beam in azimuth at a fixed elevation angle (28°).

Figure 1 Scanning Pattern of Lidar

2 Reconstruction Method

For beam *i*, the radial wind speed can be calculated from the vector wind $\vec{V} = [u, v, w]^T$,

that is

$$\hat{v}_{los,i} = \vec{n}_i \cdot \vec{V}$$

 \vec{n}_i is the unit vector of LOS *i* in inertial coordinate system, i = 0,1,2,3, and its equation is

 $\vec{n}_i = [sin\gamma cos\theta_i, sin\gamma sin\theta_i, cos\gamma]$

with the elevation angle $\gamma = 28^{\circ}$, the azimuth $\theta_i = 45^{\circ} + i \cdot 90^{\circ}$.

Combine the equation of 4 beams, we can get

$[\hat{v}_{los,0}]$		$sinycos\theta_0$	$sin\gamma sin\theta_0$	cosy]	
$\hat{v}_{los,1}$		$sin\gamma cos \theta_1$	$sin\gamma sin heta_1$	cosγ	
$\hat{v}_{los,2}$	-	$sin\gamma cos \theta_2$	$sin\gamma sin heta_2$	cosγ	
ŶINS 3		$sin\gamma cos\theta_3$	$sin\gamma sin\theta_3$	cosy	

The lidar measures the radial wind speed $v_{los,i}$. For a uniform wind field, the measured

radial wind speed $v_{los,i}$ must be close to the calculated ones $\hat{v}_{los,i}$. So, their square error must be minimized, that is

$$L_{s} = \frac{1}{2} \sum_{i=0}^{3} (\hat{v}_{los,i} - v_{los,i})^{2}$$

The minima of the above equation can be solved with LSE or LM method. Then the vector wind $\vec{V} = [u, v, w]^T$ can be obtained.

Let
$$\mathbf{x} = \begin{bmatrix} v_{los,0} \\ v_{los,1} \\ v_{los,2} \\ v_{los,3} \end{bmatrix}$$
, $\mathbf{H} = \begin{bmatrix} sinycos\theta_0 & sinysin\theta_0 & cosy \\ sinycos\theta_1 & sinysin\theta_1 & cosy \\ sinycos\theta_2 & sinysin\theta_2 & cosy \\ sinycos\theta_3 & sinysin\theta_3 & cosy \end{bmatrix}$, $\mathbf{\theta} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$, then $L_s(\mathbf{\theta}) = (\mathbf{x} - \mathbf{H}\mathbf{\theta})^T (\mathbf{x} - \mathbf{H}\mathbf{\theta})$

Let the gradient of the equation be 0, we can get the LSE of the estimation,

$$\frac{\partial L_s(\mathbf{\theta})}{\partial \mathbf{\theta}} = -2\mathbf{H}^T \mathbf{x} + 2\mathbf{H}^T \mathbf{H} \mathbf{\theta} = 0$$
$$\mathbf{\theta} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$

The wind speed and wind direction can be calculated with the following equation:

$$\begin{cases} ws = \sqrt{u^2 + v^2} \\ wd = \arctan(v, u) \end{cases}$$